Communicating with the International Space Station

Agenda

- Amateur Radio Satellites
- International Space Station (ISS) Amateur Radio Capabilities
- Equipment Needed to Communicate with the ISS
- The Process Involved

You will be able to communicate with the ISS

Amateur Radio Satellites

The first amateur radio satellite (Oscar 1) was launched in 1961. *It was built in the basements & garages of the Oscar team!*

Oscar 1 was a secondary payload. It was ejected by a high tech mechanism – a Sears & Roebuck \$1.15 spring!

Amateur Radio Satellite Service

ACTIVE AMATEUR SATELLITES

AO-7	CAS-4A	IO-86	XW-2A	
AO-73	CAS-4B	NO-84	XW-2B	
AO-91	FS-3	QO-100	XW-2C	
AO-92	FO-29	SO-50	XW-2D	
			XW-2F	

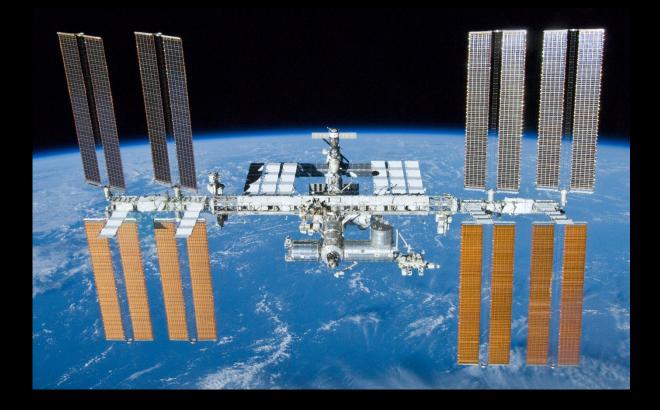
Considerable knowledge has been gained through amateur radio satellites. Currently, there are around 162 active ones in orbit!

Amateur Radio Satellite Service

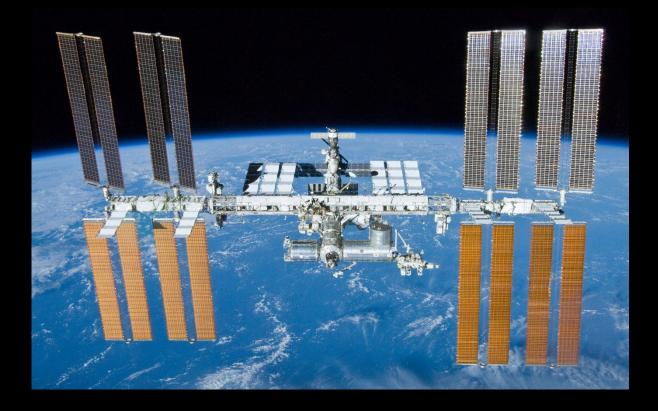
ACTIVE AMATEUR SATELLITES

AO-7	CAS-4A	IO-86	XW-2A
AO-73	CAS-4B	NO-84	XW-2B
AO-91	FS-3	QO-100	XW-2C
AO-92	FO-29	SO-50	XW-2D
			XW-2F

They tend to be small with limited power sources and run at 1W or less RF Output, typically SSB or CW


Amateur Radio Satellite Service

ACTIVE AMATEUR SATELLITES


AO-7	CAS-4A	IO-86	XW-2A
AO-73	CAS-4B	NO-84	XW-2B
AO-91	FS-3	QO-100	XW-2C
AO-92	FO-29	SO-50	XW-2D
a she			XW-2F

Some modern satellites are FM (easy-sats) and are a great way to get started! However, there are VERY few typically only operating at 250 mW.

Now we have the International Space Station!

The ISS is <u>large</u> space station It has an EXCELLENT power source It can house NORMAL radio equipment

The ISS has had <u>LIMITED</u> amateur radio capability since 2000, when astronauts were available. <u>But,</u> <u>there has been a more recent significant</u> <u>development!</u>

CROSS BAND FM REPEATE 2M/440 FM 5W - 25W

The NEW InterOperable Radio System (IORS), was installed in the International Space Station Columbus module and activated on September 2, 2020.

The new ISS Cross-Band Repeater is ON FULL TIME

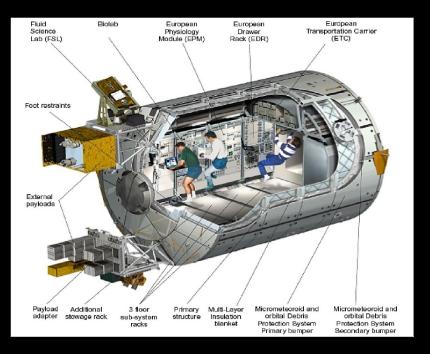
(except during educational contacts, EVAs, and dockings or un-dockings) You can use the ISS repeater to make contacts with other amateurs at <u>any</u> time while it is within range

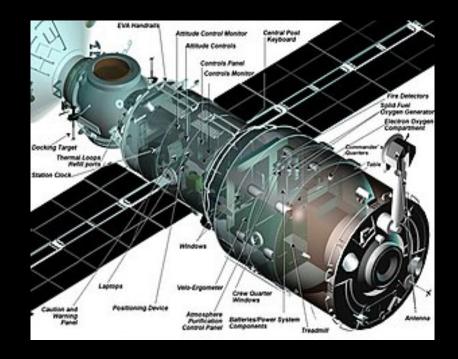
Many of you probably already have everything it takes to work the ISS!

You can actually access it with an HT running 5W!

The Amateur Radio Equipment Aboard the ISS

New Interoperable Radio System

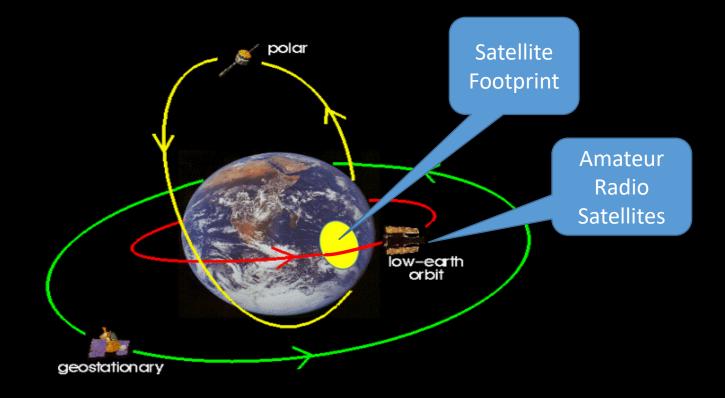

Columbus Module:


- IORS (Kenwood D710GA)
- Default: Cross Band Repeat
- 145.990 MHz up (PL 67)
- 437.800 MHz down (5W typical, 25W max)

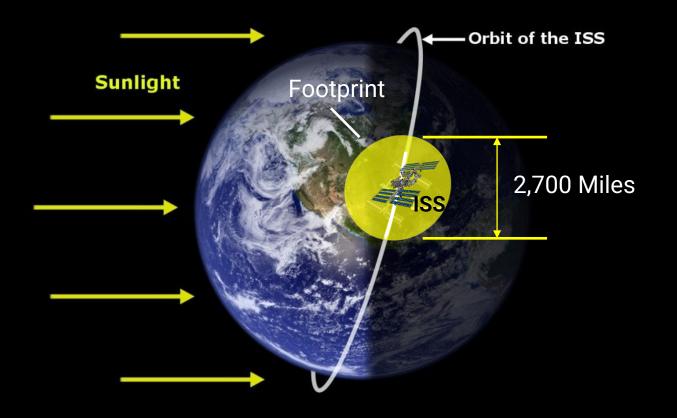
Service Module:

- IORS (Kenwood D710E)
- Default: **APRS/Packet operations**
- 145.825 MHz up & down (10W)

Columbus Module (USA)


IORS FM Voice

Service Module (Russia)


IORS APRS/Packet

Can run FM voice & APRS/Packet simultaneous

Amateur Satellite Orbits

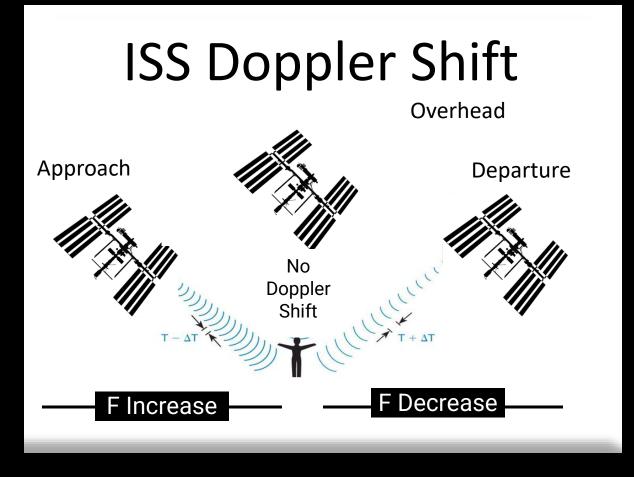
- Most Amateur Radio satellites travel in low Earth orbits (LEO) at altitudes of 800 to 1500 km (497 to 932 miles).
- At this altitude, a satellite completes one orbit every 90 to 100 minutes.
- At the same time, the Earth is turning beneath the satellite.
- A small moving FOOTPRINT on earth is covered during each pass

- The ISS is in Low Earth Orbit & travels at 17,500 Mph
- It orbits once every 90 minutes (16 orbits / day)
- Its footprint is about 2,700 miles (1,350 miles to horizon)
- When directly overhead, its altitude is about 245 miles

Operating Time Depends on the Angle of the Pass

1 DegreeApproximately 3 Minutes Total (Along the Horizon)55 DegreesApproximately 9 Minutes Total90 DegreesApproximately 10 Minutes Total (Passes Overhead)

- We normally see <u>ONE</u> to <u>THREE</u> ISS passes in a row (various inclinations)
- They are 90 minutes apart
- They repeat about every 10 hours


ISS Repeater Frequency & Doppler Shift

RECEIVE 437.800 MHz

DOWNLINK

TRANSMIT 145.990 MHz – 67 Hz CTCSS UPLINK

Nominal Operating Frequencies

- The ISS is travelling about 2,700 Mph
- Frequency is HIGHER as ISS approaches
- Frequency **LOWER** as ISS departs

Radio Program for ISS Cross Band Repeater

Uplink	Downlink	Tone	FM Mode	Memory Name	Posistion	
145.990 MHz	437.810 MHz	67 Hz	Wide	ISS-2	Approaching	
145.990 MHz	437.805 MHz	67 Hz	Wide	ISS-1		
145.990 MHz	437.800 MHz	67 Hz	Wide	ISS-0	Overhead	
145.990 MHz	437.795 MHz	67 Hz	Wide	ISS-1	Departing	
145.990 MHz	437.790 MHz	67 Hz	Wide	ISS-2	Departing	

- Doppler shift is more pronounced at 440 MHz & needs compensation (+/- 9 KHz max)
- **Doppler shift is limited** on 2M and no compensation needed (+/- 3 KHz max)

FULL DUPLEX

Full Duplex Transceivers Recommended

- Full-duplex allows you to monitor your own signal in real time
- You can tell if you're hitting the ISS repeater
- Helps you adjust your antenna positioning for the best signal and compensate for polarity shift fading

About Full Duplex

- Dual Band does not imply FULL DUPLEX
- A FULL DUPLEX transceiver contains TWO independent receivers
 - Transmit 440 MHz while receiving 2M
 - Transmit 2M while receiving 440 MHz

EXAMPLES:

- An FT-DR70 HT is Dual Band but NOT FULL DUPLEX
- A Kenwood TH-D72A HT is Dual Band & FULL DUPLEX

Full Duplex HT's

Kenwood TH-D72A

Wouxun KG-UV8E

DISCONTINUED

While a FULL DUPLEX HT is recommended, there does NOT appear to be ANY current models with this feature

Full Duplex With Two HT's

- Full duplex can be achieved with TWO RADIOS
- Use one to RECEIVE
- Use the other to TRANSMIT

Transmit

Dual Band & Full Duplex Mobiles (Plenty Available)

Icom 2370A

Yaesu FTM300

Kenwood TM-V71A

TYT-TH9800

Prior to acquisition, ALWAYS OPEN THE SQUELCH with the downlink frequency set to 437.810 MHz

RADIOS & ANTENNAS

A handheld Yagi attached to a 5 watt HT radio is the typical <u>starting setup</u> for most hams seeking satellite contact

5W Dual Band HT (Preferably Full Duplex)

Arrow 2M/440 Satellite Antenna

Setup using <u>TWO</u> Yaesu 817's for Full Duplex

IF USING AN HT & WHIP ANTENNA:

- Don't hold your whip antenna upright!
- The satellite isn't on the ground, which is what HTs and vertical antennas were designed for.
- Tilt it about the same amount as the satellite's elevation.

As lower angles towards the horizon (1,350 miles), a handheld beam antenna is required

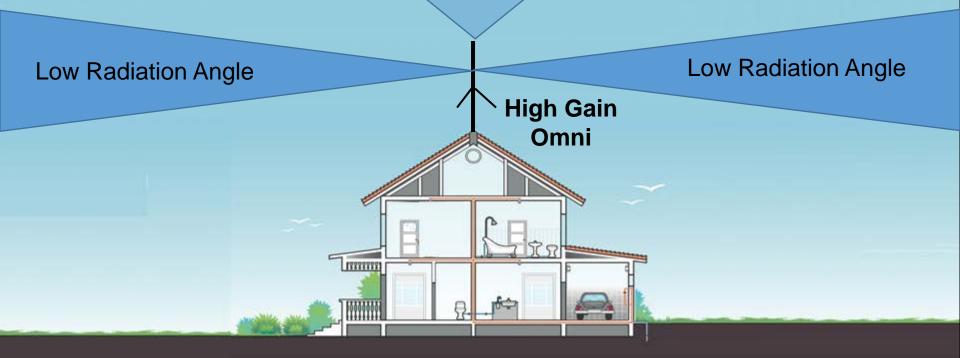
When the ISS is overhead (245 miles), you CAN make contact using a rubber duck antenna.

© AlltheSky.com

Dual Band Mobiles Work (Preferably Full Duplex)

¹⁄₄ Wave Mag Mount Recommended

Avoid High Gain / Low Radiation Angle Antennas



Live Satellite Tracking

Dual Band Base (Preferably Full Duplex)

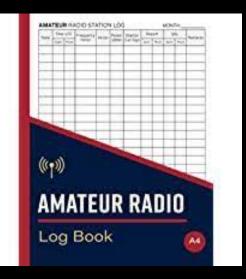
Base Antenna Considerations

Cone of Silence

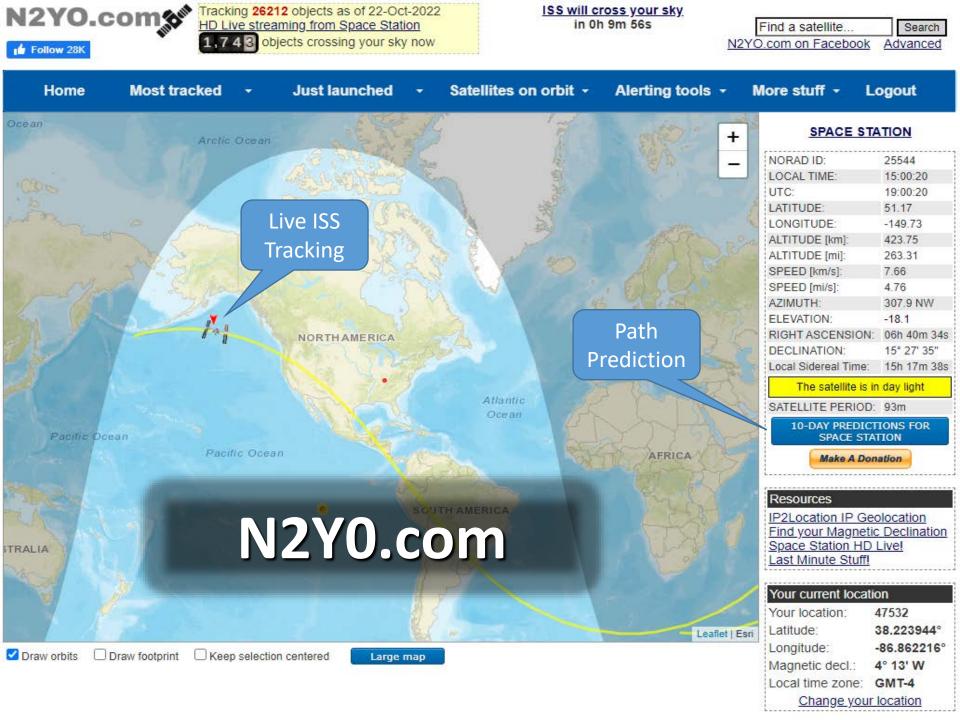
Eggbeater

2M/440 Yagi Azimuth/Elevation Adjust

Simple antennas such as an outdoor ¹/₄ wave ground plane or dipole should give good results


Logging Considerations

Portable Operation


- Your hands are full
- Holding Radio & Antenna
- Can't write down call signs
- Voice recorder (or cell app) extremely helpful

Base/Mobile Operation

- Hands are free
- Normal logbook or scratch pad will be adequate

To contact the ISS we need to know when it will pass over our area

10-DAY PREDICTIONS

Object name	SPACE STATION Live tracking More info					
Catalog #	25544 🕦, 1998-067A 🕦					
Observing location47532						
Observing coord.	Lat: 38.22°, Lng: -86.86° Change					
Local time zone	GMT -4 🕡					

- Designate you Location Select This
 Select passes
- Select "UTC" or "LOCAL TIME"

Visible passes	AM/PM time	Local tir	ne P	rint as P	DF			
Start 🕎		Max altitude		End 🕂			All passes	
Date, UTC	Az	UTC	Az	EI	UTC	Az	Mag 🕤	Info
23-Oct 10:11	SW 229°	10:17	Е 97°	87°	10:22	NE 51°	-2.1	Map and details
23-Oct 11:49	W 274°	11:54	NNW 339°	16°	11:59	NE 41°	-0.2	Map and details
23-Oct 15:05	NW 320°	15:10	NNE 17°	13°	15:14	E 77°	+0.1	Map and details
23-Oct 16:42	NW 312°	16:47	NNE 30°	59°	16:52	SE 122°	-2.1	Map and details
23-Oct 18:19	WNW	18:24	SW 23-2	13°		S 17	+0.1	Map and details
24-Oct 09:23	2.0	COI		Ig	122	56°	asse	5 Map and details
24-Oct 11:01	W 263°	11:06	NNW 332°	22°	11:10	NE 41°	-0.6	Map and details
24-Oct 14:17	NW 319°	14:21	N 13°	11°	14:26	ENE 68°	+0.3	Map and details
24-Oct 15:54	NW 315°	15:59	NE 35°	35°	16:04	ESE 110°	-1.3	Map and details
24-Oct 17:31	WNW 297°	17:36	SW 230°	23°	17:40	SSE 160°	-0.6	Map and details
25-Oct 08:36	SSW 203°	08:41	SE 131°	25°	08:46	ENE 63°	-	Map and details

Pass beginning	Max altitude	Pass ending	
Date: 23-Oct 10:11:50	Date: 23-Oct 10:17:10	Date: 23-Oct 10:22:20	
Az: 228.77° (SW)	Az: 96.53° (E)	Az: 51.26° (NE)	
EI (alt): 0.40°	EI (alt): 86.56°	EI (alt): 0.92°	ISS Pass
Mag: -	Mag: -	Mag: +1.3	10010.000
Dist to sat: 2300.6 km	Dist to sat: 418.7 km	Dist to sat: 2249.5 km	
Eclipsed?: YES	Eclipsed? YES	Eclipsed? NO	Mapped
- <u> </u>			

Good visible pass

Add this pass on your notifications list

± 10:22 North Dakota Minnesota ha O ntreal Maine 10:20 Wisconsin South Dakota Toro Wyoming Chicago Detroit Boston Iowa New York Nebraska 10:18 Philadelphia UNITED Denver Illinois STATES StLouis Utah .Washington Colorado Kans as Missouri :Ky Virginia 10:16 North Carolina Oklahoma Arkans Arizona New Mexico Atlanta Dallas Georgia Texas 10:14 Miami ey 10:12 Gulf of Mexico Have Leaflet | C OpenStreetMap contributors, Esri ME

ALERTS BY EMAIL AND TEXT/SMS

Now you could be alerted on your mobile device¹⁾ and/or email just before your favorite satellite comes over the horizon!

This is what you have to do:

- Register with n2yo.com. It's simple and free. If already registered, just login.
- Set your email address and your mobile phone number¹⁾ on your profile. Make sure the information is valid.
- Create your default observing location. If you already have one created, it would be automatically selected. If you have more than one, make sure you select a location where you are physically located so the alert would make sense.

• You are now ready to create your first notification. Select a LEO (Low Earth Orbit) satellite so that you could see the "10-day predictions" link. A great choice could be the International Space Station (ISS). Click the "10-day predictions" link. <u>Take this shortcut for ISS</u>.

• By default you will see the visible passes of the satellite over your area for the next few days. You could display all satellite passes once you click on "See all passes" button. The "all passes" list could be useful for those performing radio communications via LEO satellites (e.g. amateur radio enthusiasts). Click on "Mas and details" link.

• You should now see among other things the "Add this pass on your notification list". The button is visible only if you are currently logged in. Click it.

• The pass is now added on your notification list so you just have to select when to be alerted and how.

When? There are 3 choices: 10, 20, 30 or 60 minutes before pass beginning. Choices are selectable via a dropdown list.

How? By email (the message is sent at the address on your profile) and/or by SMS (Short Message Service) known also as

Shoot for passes with maximum elevation greater than 10 degrees!

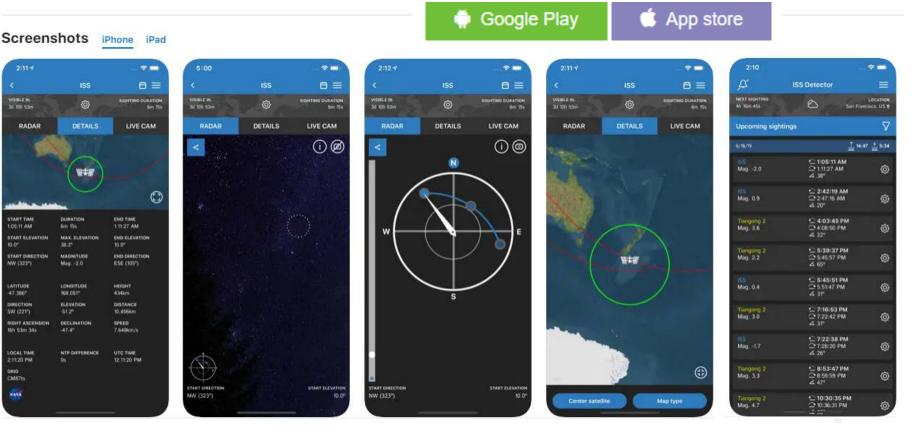
Other Path Prediction Apps

Numerous Cell Phone Apps

App Store Preview

The root is really in the

ISS Detector 4+ See the Space Station Derk Vrijdag


***** 4.1 • 102 Ratings

Free · Offers In-App Purchases

See the International Space Station fly by

ISS Detector is the easiest way to spot the station. Find out when and where to look.

If you want to see more, you can expand the app to see comets, planets and many other satellites.

Satellite Communications Etiquette

Satellite Communications Etiquette

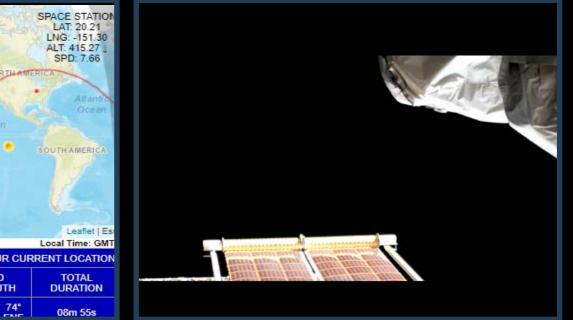
- PASSES ONLY LAST A FEW MINUTES!
- FIRST LISTEN, LISTEN, LISTEN to see how its done before attempting your first contact
- WAIT FOR A BREAK IN THE ACTION before jumping in
- **CONTACTS ARE NORMALLY VERY BRIEF** and are only an exchange of call signs and grid locators
- ANNOUNCE YOUR CALL SIGN AND GRID LOCATOR
 using phonetics
- NEVER CALL CQ ON A SATELLITE!

WD9EWK (Call Sign)

"WHISKEY-DELTA-NINE-ECHO-WHISKEY-KILO, DELTA-MIKE-FOUR-THREE."

DM43 (Grid Square)

In Summary


- SELECT EQUIPMENT NEEDED to contact the ISS
 - A proper antenna will make ALL the difference
- PROGRAM YOUR RADIO(S) for the appropriate uplink & downlink frequencies accommodating doppler shift
- DETERMINE AN AVAILABLE UPCOMING PASS
- SET UP YOUR EQUIPMENT AHEAD OF TIME
- KEEP YOUR SQUELCH OPEN during operations
- KEEP YOUR ANTENNA POINTED towards the ISS
- OBSERVE RECOMMENDED ETIQUITTE while operating

Getting Started on Amateur Satellites with Sean Kutzko, KX9X

SATELLITE PRODUCTS

Once you are successful with the ISS, there are many other satellites (FM, Digital, SSB) available for amateur radio communications

Thanks!